In “Data Mining in Python,” you will learn how to extract useful knowledge from large-scale datasets. This course introduces basic concepts and general tasks for data mining. You will explore a wide range of real-world data sets, including grocery store, restaurant reviews, business operations, social media posts, and more.

Vente anticipée ! Débloquez plus de 10 000 cours de Google, Microsoft et autres pour 160 €/an. Économisez maintenant.


Data Mining in Python
Ce cours fait partie de Spécialisation More Applied Data Science with Python

Instructeur : Qiaozhu Mei
Inclus avec
Expérience recommandée
Ce que vous apprendrez
Understand basic concepts, tasks, and procedures of data mining.
Formulate real-world information using basic data representations: itemsets, vectors, matrices, sequences, time series, and networks.
Use data mining algorithms to extract patterns and similarities from real-world datasets.
Calculate the importance of patterns and prepare for downstream machine-learning tasks.
Compétences que vous acquerrez
- Catégorie : Algorithms
- Catégorie : Unstructured Data
- Catégorie : Data Science
- Catégorie : Big Data
- Catégorie : Dimensionality Reduction
- Catégorie : Text Mining
- Catégorie : Data Mining
- Catégorie : Exploratory Data Analysis
- Catégorie : Data Structures
- Catégorie : Applied Machine Learning
- Catégorie : Unsupervised Learning
Détails à connaître

Ajouter à votre profil LinkedIn
juin 2025
20 devoirs
Découvrez comment les employés des entreprises prestigieuses maîtrisent des compétences recherchées

Élaborez votre expertise du sujet
- Apprenez de nouveaux concepts auprès d'experts du secteur
- Acquérez une compréhension de base d'un sujet ou d'un outil
- Développez des compétences professionnelles avec des projets pratiques
- Obtenez un certificat professionnel partageable

Il y a 4 modules dans ce cours
Welcome to Module 1—an Introduction to Data Mining! We will begin this module with an introduction to the basic concepts, views, and tasks of data mining. We will focus on how to formulate real world information as different data representations (e.g., itemsets, vectors, sequences, time series, networks, data streams, etc.). Then, we will elaborate on two basic functionalities of data mining: patterns and similarity. We will learn how they can be used to build more complex data mining tasks. Let’s get started!
Inclus
12 vidéos9 lectures4 devoirs1 devoir de programmation1 sujet de discussion1 plugin
Welcome to Module 2—Mining Itemset Data! In this module, we will learn how to represent data as itemsets and the basic data mining operations with itemset data. We will focus on how to extract frequent patterns from a collection of itemsets, how to evaluate the interestingness of itemset patterns, and how to compute Jaccard similarity between two itemsets. Let’s get started!
Inclus
8 vidéos5 lectures5 devoirs3 devoirs de programmation
Welcome to Module 3—Mining Vector and Matrix Data! We are halfway through our course on Data Mining! In this module, we will learn in how to mine data represented as vectors and matrices. We will focus on how to represent data as vectors, different similarity/distance metrics of vector data, what are the patterns in matrix data, and how to apply these concepts to real world scenarios. Let’s get started!
Inclus
11 vidéos3 lectures6 devoirs4 devoirs de programmation
Welcome to Module 4—Mining Sequences, our last course module!! We will conclude our course by learning how to represent data as sequences. We will focus on commonly used sequential patterns (ngrams and skipgrams), distance measures for sequence data (Edit Distance and Shingling), and how they can be applied to real world tasks. Let’s get started!
Inclus
10 vidéos3 lectures5 devoirs4 devoirs de programmation1 plugin
Obtenez un certificat professionnel
Ajoutez ce titre à votre profil LinkedIn, à votre curriculum vitae ou à votre CV. Partagez-le sur les médias sociaux et dans votre évaluation des performances.
Instructeur

Offert par
En savoir plus sur Data Analysis
University of Michigan
University of Michigan
University of Michigan
Pour quelles raisons les étudiants sur Coursera nous choisissent-ils pour leur carrière ?





Ouvrez de nouvelles portes avec Coursera Plus
Accès illimité à 10,000+ cours de niveau international, projets pratiques et programmes de certification prêts à l'emploi - tous inclus dans votre abonnement.
Faites progresser votre carrière avec un diplôme en ligne
Obtenez un diplôme auprès d’universités de renommée mondiale - 100 % en ligne
Rejoignez plus de 3 400 entreprises mondiales qui ont choisi Coursera pour les affaires
Améliorez les compétences de vos employés pour exceller dans l’économie numérique
Foire Aux Questions
Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:
The course may not offer an audit option. You can try a Free Trial instead, or apply for Financial Aid.
The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile. If you only want to read and view the course content, you can audit the course for free.
If you subscribed, you get a 7-day free trial during which you can cancel at no penalty. After that, we don’t give refunds, but you can cancel your subscription at any time. See our full refund policy.
Plus de questions
Aide financière disponible,