In “Applied Information Extraction in Python,” you will learn how to extract useful information from free-text data, which is a type of string data created when people type. Examples of free-text data include names of people or organizations, location information such as cities and zip codes, or other elements like stock prices or clinical diagnoses. Free-text data is found everywhere, from magazine articles to social media posts, and can be complex to analyze.

Vente anticipée ! Débloquez plus de 10 000 cours de Google, Microsoft et autres pour 160 €/an. Économisez maintenant.


Applied Information Extraction in Python
Ce cours fait partie de Spécialisation More Applied Data Science with Python

Instructeur : VG Vinod Vydiswaran
Inclus avec
Expérience recommandée
Ce que vous apprendrez
Develop skills to process and interpret information presented in free-text data.
Identify the major classes of named entity recognition (NER) and implement, with guidance, state-of-the-art machine learning techniques for NER.
Compare, contrast, and select between multiple machine learning and deep learning approaches for NER.
Explore Large Language Models and configure a Transformer-based pipeline to extract entities of interest from a text dataset.
Compétences que vous acquerrez
- Catégorie : Unstructured Data
- Catégorie : Large Language Modeling
- Catégorie : Applied Machine Learning
- Catégorie : ChatGPT
- Catégorie : Text Mining
- Catégorie : Data Mining
- Catégorie : Data Pipelines
- Catégorie : Deep Learning
- Catégorie : Artificial Neural Networks
- Catégorie : Python Programming
- Catégorie : Natural Language Processing
- Catégorie : Feature Engineering
Détails à connaître

Ajouter à votre profil LinkedIn
juin 2025
14 devoirs
Découvrez comment les employés des entreprises prestigieuses maîtrisent des compétences recherchées

Élaborez votre expertise du sujet
- Apprenez de nouveaux concepts auprès d'experts du secteur
- Acquérez une compréhension de base d'un sujet ou d'un outil
- Développez des compétences professionnelles avec des projets pratiques
- Obtenez un certificat professionnel partageable

Il y a 4 modules dans ce cours
This module introduces information extraction, covering key tasks and approaches for extracting relevant information from text. You will explore pattern-based and list-based methods to identify and extract information from text data, applying these techniques across diverse domains. You will also develop an end-to-end NLP pipeline to extract named entities from free text using terminology resources.
Inclus
7 vidéos5 lectures3 devoirs1 devoir de programmation1 sujet de discussion1 laboratoire non noté
In Module 2, you'll dive into the world of named entity recognition (NER). You'll learn to define and identify named entities, and understand how to tackle related tasks by framing them as NER challenges. We'll explore how to use resources like standardized terminology and named gazettes to enhance NER. You'll also gain hands-on experience by training a machine learning model for sequence classification using an annotated text dataset. Finally, we'll discuss the pros and cons of different Markov models for NER, equipping you with the insights needed for practical applications.
Inclus
7 vidéos6 lectures4 devoirs1 devoir de programmation1 laboratoire non noté
In Module 3, focused on neural network models, you will explore the differences between training deep learning models and traditional machine learning models. You'll learn how to model and train a neural network-based classifier, as well as formulate text as features for NER model training. We will discuss the pros and cons of deep learning approaches. You'll design a neural network model to identify concepts from free text and apply a trained deep learning model to solve NER tasks.
Inclus
5 vidéos4 lectures4 devoirs1 devoir de programmation1 laboratoire non noté
In this module, you'll dive into the power of deep learning models in diverse fields such as healthcare and sports commentary. You'll learn how to build neural network models that are fine-tuned for specific tasks and discover how to set up a deep neural network for detecting key entities. We'll also introduce you to the world of large language models, showcasing their transformative capabilities and applications in information extraction.
Inclus
5 vidéos4 lectures3 devoirs1 devoir de programmation1 plugin
Obtenez un certificat professionnel
Ajoutez ce titre à votre profil LinkedIn, à votre curriculum vitae ou à votre CV. Partagez-le sur les médias sociaux et dans votre évaluation des performances.
Instructeur

Offert par
En savoir plus sur Machine Learning
University of Michigan
University of Michigan
University of Michigan
Pour quelles raisons les étudiants sur Coursera nous choisissent-ils pour leur carrière ?





Ouvrez de nouvelles portes avec Coursera Plus
Accès illimité à 10,000+ cours de niveau international, projets pratiques et programmes de certification prêts à l'emploi - tous inclus dans votre abonnement.
Faites progresser votre carrière avec un diplôme en ligne
Obtenez un diplôme auprès d’universités de renommée mondiale - 100 % en ligne
Rejoignez plus de 3 400 entreprises mondiales qui ont choisi Coursera pour les affaires
Améliorez les compétences de vos employés pour exceller dans l’économie numérique
Foire Aux Questions
Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:
The course may not offer an audit option. You can try a Free Trial instead, or apply for Financial Aid.
The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile. If you only want to read and view the course content, you can audit the course for free.
If you subscribed, you get a 7-day free trial during which you can cancel at no penalty. After that, we don’t give refunds, but you can cancel your subscription at any time. See our full refund policy.
Plus de questions
Aide financière disponible,