• für für Einzelpersonen
  • für Unternehmen
  • für für Hochschulen
  • für Behörden
Coursera
  • Online-Abschlüsse
  • Jobs
  • Anmelden
  • Kostenlose Teilnahme
    Coursera
    • Blättern
    • Predictive Analytics

    Prädiktive Analytik-Kurse Online

    Finden Sie Predictive Analytics-Kurse, die Themen wie Datenmodellierung, Statistik und Machine Learning abdecken. Bereiten Sie sich auf Karrieren in Datenwissenschaft, Business Intelligence und Forschung vor.

    Zu den Suchergebnissen springen

    Filtern nach

    Betreff
    Erforderlich
     *

    Sprache
    Erforderlich
     *

    Die im gesamten Kurs, sowohl für Anweisungen als auch Bewertungen, verwendete Sprache.

    Lernprodukt
    Erforderlich
     *

    Erwerben Sie mit praktischen Tutorials praxisrelevante Kompetenzen in weniger als zwei Stunden.
    Lernen Sie von Spitzenlehrkräften mit benoteten Aufgaben, Videos und Diskussionsforen.
    Sie erlernen neue Tools oder Kompetenzen in einer interaktiven, praxisnahen Umgebung.
    Erwerben Sie eingehende Kenntnisse in einem Fach, indem Sie eine Reihe von Kursen und Projekten abschließen.
    Erwerben Sie Karrierereferenzen von Branchenführern, die Ihre Qualifikation belegen.
    Erwerben Sie Karrierereferenzen, während Sie an Kursen für Ihren Masterabschluss teilnehmen.
    Erwerben Sie Ihren Bachelor- oder Master-Abschluss online zu einem Bruchteil der Kosten eines Präsenzstudium.
    Schließen Sie Kurse auf Hochschulniveau ab, ohne sich für ein ganzes Studium einzuschreiben.
    Erwerben Sie eine von einer Universität ausgegebene Karrierereferenz in einem flexiblen, interaktiven Format.

    Niveau
    Erforderlich
     *

    Dauer
    Erforderlich
     *

    Untertitel
    Erforderlich
     *

    Lehrkraft
    Erforderlich
     *

    Erkunden Sie den Predictive Analytics-Kurskatalog

    • Status: Neu
      Neu
      C

      Coursera Instructor Network

      GenAI for Inside Sales: Crafting Effective Outreach

      Kompetenzen, die Sie erwerben: Inside Sales, Generative AI Agents, AI Personalization, Sales Development, Sales Process, Sales Enablement, Sales Strategy, Prompt Engineering, ChatGPT, Marketing Automation, HubSpot CRM, Personalized Service, Content Performance Analysis, Workflow Management, Customer Engagement, Customer Relationship Management (CRM) Software, Business Process Automation, Campaign Management

      Mittel · Kurs · 1–4 Wochen

    • Status: Neu
      Neu
      P

      Packt

      NLP – Machine Learning Models in Python

      Kompetenzen, die Sie erwerben: Dimensionality Reduction, Natural Language Processing, Text Mining, Applied Machine Learning, Statistical Machine Learning, Machine Learning Algorithms, Supervised Learning, Unsupervised Learning, Python Programming, Scikit Learn (Machine Learning Library), Machine Learning, Predictive Modeling, Linear Algebra, Algorithms

      Mittel · Kurs · 1–3 Monate

    • Status: Neu
      Neu
      Status: Kostenloser Testzeitraum
      Kostenloser Testzeitraum
      S

      Simplilearn

      CBAP Certification Business Analysis Training

      Kompetenzen, die Sie erwerben: Requirements Management, Project Management, Risk Management, Statistical Analysis, Project Planning, Agile Project Management, Microsoft Excel, Solution Design, Cost Management, Project Management Office (PMO), Business Analysis, Excel Formulas, Requirements Elicitation, Stakeholder Management, Scope Management, Pivot Tables And Charts, Team Leadership, Dashboard, Excel Macros, Requirements Analysis

      Anfänger · Spezialisierung · 1–3 Monate

    • Status: Neu
      Neu
      Status: Kostenloser Testzeitraum
      Kostenloser Testzeitraum
      S

      SkillUp EdTech

      Digital Advertising

      Kompetenzen, die Sie erwerben: Search Engine Marketing, Google Ads, Digital Advertising, Online Advertising, Advertising Campaigns, Pay Per Click Advertising, Paid media, Advertising, Marketing, Keyword Research, Lead Generation, Social Media Campaigns, Marketing Analytics, LinkedIn, Marketing Strategies, B2B Sales, Facebook, Target Audience, Bidding

      Anfänger · Kurs · 1–4 Wochen

    • Status: Kostenloser Testzeitraum
      Kostenloser Testzeitraum
      T

      Tableau Learning Partner

      Tableau Business Intelligence-Analyst

      Kompetenzen, die Sie erwerben: Interaktive Datenvisualisierung, Daten-Storytelling, Datenanalyse, Datenvisualisierungssoftware, Daten Präsentation, Datenkompetenz, Statistische Visualisierung, Dashboard, Auszug, Datenqualität, Ad-hoc-Berichterstattung, Erhebung von Anforderungen, Business Metriken, Data-Warehousing, Analyse räumlicher Daten, Explorative Datenanalyse, Tableau Software, Unternehmensanalyse, Datenethik, Daten-Governance

      4,7
      Bewertung, 4,7 von 5 Sternen
      ·
      966 Bewertungen

      Anfänger · Berufsbezogenes Zertifikat · 3–6 Monate

    • Status: Neu
      Neu
      Status: Kostenloser Testzeitraum
      Kostenloser Testzeitraum
      I

      Illinois Tech

      Advanced Statistical Techniques for Data Science

      Kompetenzen, die Sie erwerben: Machine Learning Algorithms, Statistical Analysis, Bayesian Statistics, Data Visualization, Statistical Inference, Data Analysis, Data Presentation, Regression Analysis, Data Cleansing, Applied Machine Learning, Analytics, Machine Learning, Statistical Methods, R Programming, Data Science, Statistical Modeling, Data Manipulation, Data Validation, Feature Engineering, Exploratory Data Analysis

      Auf einen Abschluss hinarbeiten

      4,5
      Bewertung, 4,5 von 5 Sternen
      ·
      38 Bewertungen

      Mittel · Spezialisierung · 3–6 Monate

    • Status: Neu
      Neu
      P

      Packt

      Generative AI and its Impact on Cybersecurity

      Kompetenzen, die Sie erwerben: MITRE ATT&CK Framework, Generative AI, Cyber Threat Intelligence, Cyber Security Strategy, Cybersecurity, Threat Modeling, Computer Security, Cyber Attacks, Threat Detection, Artificial Intelligence, Anomaly Detection, Data Ethics, Information Privacy, Innovation

      Mittel · Kurs · 1–3 Monate

    • Status: Neu
      Neu
      Status: Kostenloser Testzeitraum
      Kostenloser Testzeitraum
      U

      University of Minnesota

      Business Model & Product Pitch

      Kompetenzen, die Sie erwerben: Business Modeling, Entrepreneurship, Growth Strategies, Price Negotiation, Business Planning, Financial Modeling, Cost Accounting, Product Strategy, Product Development, New Product Development, Business Strategies, Value Propositions, Presentations, Business Metrics, Customer Acquisition Management, Market Analysis, Fundraising

      Anfänger · Kurs · 1–3 Monate

    • Status: Neu
      Neu
      Status: Kostenloser Testzeitraum
      Kostenloser Testzeitraum
      M

      Microsoft

      Microsoft 365 with Generative AI

      Kompetenzen, die Sie erwerben: Prompt Engineering, Microsoft Copilot, Presentations, Microsoft Excel, Microsoft Outlook, Data Ethics, Microsoft PowerPoint, Microsoft Teams, Data Storytelling, Predictive Modeling, Microsoft 365, Data Visualization Software, Microsoft Word, Collaborative Software, Data Analysis, Multimedia, Productivity Software, Meeting Facilitation, Data-Driven Decision-Making, Artificial Intelligence

      4,8
      Bewertung, 4,8 von 5 Sternen
      ·
      8 Bewertungen

      Anfänger · Berufsbezogenes Zertifikat · 3–6 Monate

    • Status: Neu
      Neu
      S

      Starweaver

      Master Data Storytelling for B2B & B2C Sales

      Kompetenzen, die Sie erwerben: Data Storytelling, Storytelling, Sales Presentation, Customer Relationship Management (CRM) Software, Sales Strategy, Sales, Customer Relationship Management, B2B Sales, Customer Insights, Data Visualization Software, Dashboard, Business Intelligence, HubSpot CRM, Persuasive Communication, Business Analytics, Salesforce

      Anfänger · Kurs · 1–4 Wochen

    • Status: Neu
      Neu
      Status: Kostenloser Testzeitraum
      Kostenloser Testzeitraum
      U

      University of Minnesota

      Market Analysis

      Kompetenzen, die Sie erwerben: Customer Acquisition Management, Target Market, Market Opportunities, Competitive Analysis, Go To Market Strategy, Market Analysis, Persona Development, Market Research, Value Propositions, Strategic Partnership, Product Management, Business Strategy, Business Modeling, Product Lifecycle Management, Product Requirements

      Anfänger · Kurs · 1–3 Monate

    • Status: Neu
      Neu
      Status: Kostenloser Testzeitraum
      Kostenloser Testzeitraum
      I

      IBM

      IBM Digital Marketing and Growth Hacking

      Kompetenzen, die Sie erwerben: Search Engine Marketing, Keyword Research, Google Ads, Digital Advertising, Web Analytics and SEO, Online Advertising, Digital Marketing, Target Audience, Digital Media Strategy, Advertising Campaigns, Pay Per Click Advertising, Search Engine Optimization, Email Marketing, Content Marketing, Paid media, Advertising, Marketing Analytics, Web Analytics, Generative AI, Marketing Automation

      5
      Bewertung, 5 von 5 Sternen
      ·
      8 Bewertungen

      Anfänger · Berufsbezogenes Zertifikat · 3–6 Monate

    1…262728…236

    Zusammenfassend finden Sie hier 10 unsere beliebtesten predictive analytics Kurse

    • GenAI for Inside Sales: Crafting Effective Outreach: Coursera Instructor Network
    • NLP – Machine Learning Models in Python: Packt
    • CBAP Certification Business Analysis Training: Simplilearn
    • Digital Advertising: SkillUp EdTech
    • Tableau Business Intelligence-Analyst: Tableau Learning Partner
    • Advanced Statistical Techniques for Data Science: Illinois Tech
    • Generative AI and its Impact on Cybersecurity: Packt
    • Business Model & Product Pitch: University of Minnesota
    • Microsoft 365 with Generative AI: Microsoft
    • Master Data Storytelling for B2B & B2C Sales : Starweaver

    Fähigkeiten, die Sie bei Business Essentials erlernen können

    Analytik (37)
    Präsentation (33)
    Modellierung (29)
    Unternehmensanalytik (27)
    Sprache (26)
    Microsoft Excel (26)
    Schreiben (26)
    Sprache (18)
    Planen (17)
    Business-Kommunikation (16)
    Entscheidungsfindung (16)
    Leitung (15)

    Häufig gestellte Fragen zum Thema Predictive Analytics

    Predictive Analytics ist ein Zweig der Datenanalyse, der statistische Algorithmen verwendet, um Vorhersagen über zukünftige Ereignisse oder Ergebnisse zu treffen. Dazu gehört die Analyse historischer und aktueller Daten, um Muster, Trends und Beziehungen zu erkennen, die dann für fundierte Vorhersagen über die Zukunft genutzt werden können.

    Predictive Analytics nutzt verschiedene statistische Modelle und Techniken des maschinellen Lernens, um große Datenmengen zu verarbeiten. Diese Modelle analysieren Datenmuster, identifizieren potenzielle Korrelationen und erstellen Prognosemodelle, um Ergebnisse vorherzusagen. Durch die Anwendung dieser Modelle auf neue Dateneingaben kann die prädiktive Analytik wertvolle Einblicke und Vorhersagen über künftiges Verhalten, Trends und Ergebnisse liefern.

    Dieser Bereich ist in vielen Branchen von großem Wert, unter anderem im Finanzwesen, im Gesundheitswesen, im Marketing und im elektronischen Handel. Sie hilft Unternehmen, Entscheidungsprozesse zu optimieren, Risiken zu minimieren und Chancen zu erkennen. Im Marketing kann die prädiktive Analytik beispielsweise zur Vorhersage des Kundenverhaltens und der Kundenpräferenzen eingesetzt werden, so dass Unternehmen Marketingkampagnen und personalisierte Erlebnisse für ihre Kunden maßschneidern können.

    Zusammenfassend lässt sich sagen, dass Predictive Analytics ein leistungsfähiges Tool ist, mit dem Unternehmen auf der Grundlage historischer und aktueller Daten fundierte Vorhersagen über zukünftige Ereignisse oder Ergebnisse treffen können. Sie ermöglicht eine bessere Entscheidungsfindung und ein besseres Risikomanagement und hilft Unternehmen, neue Chancen zu erkennen. ‎

    Um sich in der prädiktiven Analytik auszuzeichnen, sollten Sie sich auf den Erwerb der folgenden Fähigkeiten konzentrieren:

    1. Statistik und Mathematik: Ein gründliches Verständnis der statistischen Konzepte, der Wahrscheinlichkeitstheorie und der linearen Algebra ist für die prädiktive Analytik unerlässlich. Diese Grundlagen werden Ihnen helfen, die verschiedenen Techniken der prädiktiven Modellierung zu verstehen.

    2. Datenmanipulation und -analyse: Die Beherrschung der Datenmanipulation und -analyse mit Tools wie Python, R oder SQL ist von entscheidender Bedeutung. Sie müssen in der Lage sein, Daten zu bereinigen, vorzuverarbeiten und zu untersuchen, um sinnvolle Erkenntnisse zu gewinnen.

    3. maschinelles Lernen: Das Verständnis der Grundlagen des maschinellen Lernens ist für die prädiktive Analytik unerlässlich. Dazu gehören Kenntnisse über verschiedene Algorithmen wie lineare Regression, logistische Regression, Entscheidungsbäume, Zufallswälder und Support-Vektor-Maschinen.

    4. Datenvisualisierung: Ebenso wichtig ist es, die Erkenntnisse effektiv zu kommunizieren. Das Erlernen von Datenvisualisierungstechniken mit Bibliotheken wie ggplot, matplotlib oder Tableau ermöglicht es Ihnen, Ihre Ergebnisse klar und intuitiv zu präsentieren.

    5. Programmierung: Gute Programmierkenntnisse sind unerlässlich, insbesondere in Python oder R. Sie sollten in der Lage sein, effizienten Code zu schreiben, Bibliotheken anzuwenden und eigene Algorithmen zu entwickeln.

    6. Fachwissen: Der Erwerb von Fachwissen in dem spezifischen Bereich, in dem Sie prädiktive Analysen anwenden möchten, ist wertvoll. Das Verständnis von Geschäftskonzepten im Zusammenhang mit der Branche, in der Sie arbeiten, wird Ihnen helfen, die Ergebnisse richtig zu interpretieren.

    7. Kritisches Denken und Problemlösungsfähigkeit: Die Fähigkeit, Probleme kritisch zu analysieren und systematisch anzugehen, ist für die prädiktive Analytik von entscheidender Bedeutung. Sie sollten in der Lage sein, Modelle zu bewerten, Ergebnisse zu interpretieren und datengestützte Entscheidungen zu treffen.

    8. Kommunikation und Zusammenarbeit: Es ist wichtig, dass Sie in der Lage sind, Ihre Ergebnisse zu artikulieren und effektiv in einem Team zu arbeiten. Gute Kommunikationsfähigkeiten und die Fähigkeit zur Zusammenarbeit mit Fachleuten, Dateningenieuren und Interessenvertretern des Unternehmens werden Ihre Effektivität erhöhen.

    Wenn Sie diese Fähigkeiten beherrschen, sind Sie gut gerüstet, um im Bereich der prädiktiven Analytik zu glänzen und datengestützte Vorhersagen und Empfehlungen zu machen. ‎

    Predictive Analytics-Kenntnisse können eine Fülle von Beschäftigungsmöglichkeiten in verschiedenen Branchen eröffnen. Mit diesen Fähigkeiten können Sie u. a. folgende Berufe ausüben:

    1. Datenwissenschaftler: Als Data Scientist nutzen Sie Predictive Analytics-Techniken und -Tools, um große Datenmengen zu analysieren und Modelle zu entwickeln, die zukünftige Trends und Muster vorhersagen. Sie arbeiten eng mit den Beteiligten zusammen, um datengestützte Entscheidungen zu treffen und Erkenntnisse zu gewinnen, die das Unternehmenswachstum fördern.

    2. Business Analyst: Business Analysten mit Kenntnissen in prädiktiver Analytik helfen Unternehmen, Chancen zu erkennen und fundierte Entscheidungen auf der Grundlage von Datenanalysen zu treffen. Durch den Einsatz von Vorhersagemodellen liefern sie wertvolle Erkenntnisse und Empfehlungen, die zur strategischen Unternehmensplanung und -optimierung beitragen.

    3. Datenanalyst: Datenanalysten mit Kenntnissen in prädiktiver Analytik extrahieren aussagekräftige Informationen aus großen Datensätzen und führen statistische Analysen durch, um Trends und Muster zu erkennen. Sie nutzen prädiktive Modellierungstechniken zur Vorhersage künftiger Ergebnisse und helfen Unternehmen, durch datengestützte Entscheidungen einen Wettbewerbsvorteil zu erzielen.

    4. Marktforschungsanalyst: Marktforschungsanalysten setzen prädiktive Analysetechniken ein, um Markttrends zu analysieren, das Verbraucherverhalten vorherzusagen und potenzielle Marktchancen zu ermitteln. Sie helfen den Unternehmen, Kundenpräferenzen zu verstehen, die Produktentwicklung zu steuern und wirksame Marketingstrategien zu entwickeln.

    5. Risikoanalyst: Risikoanalysten setzen prädiktive Analysen ein, um potenzielle Risiken für Unternehmen zu bewerten und vorherzusagen. Sie analysieren historische Daten, entwickeln Modelle und prognostizieren zukünftige Risiken, um Unternehmen dabei zu unterstützen, fundierte Entscheidungen zu treffen, um potenzielle Bedrohungen abzuschwächen und das Risikomanagement zu optimieren.

    6. Finanzanalyst: Finanzanalysten nutzen prädiktive Analysen, um Prognosen für Finanzmärkte zu erstellen, Investitionsmöglichkeiten zu analysieren und Investitionsrisiken zu bewerten. Durch die Analyse historischer Daten und wirtschaftlicher Indikatoren liefern sie Erkenntnisse, die bei Investitionsentscheidungen helfen und die Portfolio-Performance optimieren.

    7. Analyst für die Lieferkette: Supply-Chain-Analysten wenden prädiktive Analysen an, um Lagerbestände zu optimieren, Abläufe zu rationalisieren und die Effizienz der gesamten Lieferkette zu verbessern. Durch die Analyse historischer Daten und Nachfragemuster prognostizieren sie den zukünftigen Bedarf, identifizieren potenzielle Engpässe und ermöglichen es Unternehmen, datengestützte Entscheidungen in Bezug auf Beschaffung, Produktion und Vertrieb zu treffen.

    8. Marketing-Analyst: Marketinganalysten nutzen prädiktive Analysen, um die Wirksamkeit von Marketingkampagnen zu bewerten, Zielgruppen zu identifizieren und das Verbraucherverhalten vorherzusagen. Sie analysieren Kundendaten, führen Marktforschung durch und entwickeln Prognosemodelle, um Marketingstrategien zu optimieren und die Kapitalrendite zu steigern.

    Dies sind nur einige Beispiele für die vielen Beschäftigungsmöglichkeiten, die sich Personen mit Kenntnissen der prädiktiven Analytik bieten. Die Nachfrage nach diesen Fähigkeiten nimmt in allen Branchen ständig zu, so dass dies ein hervorragendes Feld für eine lohnende Karriere ist. ‎

    Für ein Studium der Predictive Analytics eignen sich am besten Personen, die über einen soliden Hintergrund in Mathematik, Statistik und Programmierung verfügen. Sie sollten ein ausgeprägtes Interesse an Datenanalyse und Problemlösung haben. Darüber hinaus würden sich Personen, die über kritisches Denken, Liebe zum Detail und die Fähigkeit, mit großen Datenmengen zu arbeiten, verfügen, in diesem Bereich auszeichnen. ‎

    Hier sind einige Themen, die mit Predictive Analytics zusammenhängen und die Sie studieren können:

    1. Datenauswertung: Lernen Sie Techniken und Tools kennen, mit denen Sie wertvolle Erkenntnisse aus großen Datenbeständen gewinnen können.

    2. maschinelles Lernen: Verstehen Sie die Algorithmen und Modelle, die verwendet werden, um Vorhersagen zu treffen und Muster aus Daten abzuleiten.

    3. Statistische Analyse: Erwerb von Kenntnissen über statistische Methoden und Techniken, die zur Analyse und Interpretation von Daten verwendet werden.

    4. Datenvisualisierung: Erkunden Sie verschiedene Visualisierungstools und -techniken, um Daten aussagekräftig und wirkungsvoll zu präsentieren.

    5. Zeitreihenanalyse: Schwerpunkt auf der Analyse von Daten, die im Laufe der Zeit gesammelt wurden, um Muster und Trends zu erkennen und Vorhersagen zu treffen.

    6. Vorverarbeitung von Daten: Lernen Sie Techniken zur Bereinigung, Umwandlung und Vorbereitung von Daten für prädiktive Analysen kennen.

    7. Überwachtes Lernen: Verstehen der Prinzipien und Anwendungen von Algorithmen des überwachten Lernens, die in der prädiktiven Analytik verwendet werden.

    8. Unüberwachtes Lernen: Erkunden Sie die Techniken des unüberwachten Lernens, die verwendet werden, um Muster und Beziehungen in Daten zu entdecken.

    9. Regressionsanalyse: Vertiefung von Regressionsmodellen zur Vorhersage einer kontinuierlichen Ergebnisvariablen auf der Grundlage von unabhängigen Variablen.

    10. Risikoanalyse: Untersuchung von Methoden zur Bewertung und Verwaltung von Risiken im Zusammenhang mit prädiktiven Analyseprojekten.

    Denken Sie daran, dass dies nur ein Ausgangspunkt ist und dass es viele andere Unterthemen und Spezialgebiete innerhalb von Predictive Analytics gibt, die Sie je nach Ihren Interessen und Karrierezielen erkunden können. ‎

    Online Predictive Analytics Kurse bieten eine bequeme und formative Bewertung, um Ihr Wissen zu erweitern oder Neues zu lernen. Predictive Analytics ist ein Zweig der Datenanalyse, der statistische Algorithmen nutzt, um Vorhersagen über zukünftige Ereignisse oder Ergebnisse zu treffen. Dazu gehört die Analyse historischer und aktueller Daten, um Muster, Trends und Beziehungen zu erkennen, die dann für fundierte Vorhersagen über die Zukunft genutzt werden können.

    Predictive Analytics nutzt verschiedene statistische Modelle und Techniken des maschinellen Lernens, um große Datenmengen zu verarbeiten. Diese Modelle analysieren Datenmuster, identifizieren potenzielle Korrelationen und erstellen Prognosemodelle, um Ergebnisse vorherzusagen. Durch die Anwendung dieser Modelle auf neue Dateneingaben kann die prädiktive Analytik wertvolle Einblicke und Vorhersagen über künftiges Verhalten, Trends und Ergebnisse liefern.

    Dieser Bereich ist in vielen Branchen von großem Wert, unter anderem im Finanzwesen, im Gesundheitswesen, im Marketing und im elektronischen Handel. Sie hilft Unternehmen, Entscheidungsprozesse zu optimieren, Risiken zu minimieren und Chancen zu erkennen. Im Marketing kann die prädiktive Analytik beispielsweise zur Vorhersage des Kundenverhaltens und der Kundenpräferenzen eingesetzt werden, so dass Unternehmen Marketingkampagnen und personalisierte Erlebnisse für ihre Kunden maßschneidern können.

    Zusammenfassend lässt sich sagen, dass Predictive Analytics ein leistungsfähiges Tool ist, mit dem Unternehmen auf der Grundlage historischer und aktueller Daten fundierte Vorhersagen über zukünftige Ereignisse oder Ergebnisse treffen können. Sie ermöglicht eine bessere Entscheidungsfindung und ein besseres Risikomanagement und hilft Unternehmen, neue Chancen zu erkennen. Kompetenzen Wählen Sie aus einem breiten Angebot an Predictive Analytics Kursen, die von Top-Universitäten und Branchenführern angeboten werden und auf verschiedene Qualifikationsstufen zugeschnitten sind. ‎

    Wenn Sie die Fähigkeiten Ihrer Mitarbeiter im Bereich Predictive Analytics verbessern möchten, ist es wichtig, einen Kurs zu wählen, der ihren aktuellen Fähigkeiten und Lernzielen entspricht. Unser Skills Dashboard ist ein unschätzbares Instrument zur Ermittlung von Qualifikationslücken und zur Auswahl des am besten geeigneten Kurses für eine effektive Fortbildung. Um ein umfassendes Verständnis dafür zu erlangen, wie unser Kurs Ihren Mitarbeitern zugute kommen kann, sollten Sie sich die von uns angebotenen Unternehmenslösungen ansehen. Entdecken Sie hier mehr über unsere maßgeschneiderten Programme bei Coursera für Unternehmen. ‎

    Diese häufig gestellten Fragen dienen nur zu Informationszwecken. Den Lernenden wird empfohlen, eingehender zu recherchieren, ob Kurse und andere angestrebte Qualifikationen wirklich ihren persönlichen, beruflichen und finanziellen Vorstellungen entsprechen.

    Andere wissenswerte Themen

    Kunst und Geisteswissenschaften
    338 Kurse
    Wirtschaft
    1095 Kurse
    Informatik
    668 Kurse
    Datenverarbeitung
    425 Kurse
    Informationstechnologie
    145 Kurse
    Gesundheit
    471 Kurse
    Mathematik und Logik
    70 Kurse
    Persönliche Entwicklung
    137 Kurse
    Physikalische Wissenschaft und Technik
    413 Kurse
    Sozialwissenschaften
    401 Kurse
    Sprachen lernen
    150 Kurse

    Coursera-Fußzeile

    Technische Fertigkeiten

    • ChatGPT
    • Programmieren
    • Informatik
    • Cybersicherheit
    • DevOps
    • Ethisches Hacking
    • Generative KI
    • Java Programmierung
    • Python
    • Webentwicklung

    Analytische Fähigkeiten

    • Künstliche Intelligenz
    • Big Data
    • Unternehmensanalyse
    • Datenanalyse
    • Datenverarbeitung
    • Finanzplanung
    • Maschinelles Lernen
    • Microsoft Excel
    • Microsoft Power BI
    • SQL

    Business-Fähigkeiten

    • Buchhaltung
    • Digitales Marketing
    • E-Commerce
    • Finanzen
    • Google
    • Grafikdesign
    • IBM
    • Marketing
    • Projektmanagement
    • Social Media-Marketing

    Karriere-Ressourcen

    • Wichtige IT-Zertifizierungen
    • Einkommensstarke Fähigkeiten zu erlernen
    • So erwerben Sie eine PMP-Zertifizierung
    • Wie man künstliche Intelligenz lernt
    • Beliebte Zertifizierungen für Cybersicherheit
    • Beliebte Datenanalyse-Zertifizierungen
    • Was macht ein Datenanalyst?
    • Ressourcen für die berufliche Entwicklung
    • Berufseignungstest
    • Teilen Sie Ihre Coursera Lerngeschichte

    Coursera

    • Info
    • Was wir anbieten
    • Leitung
    • Jobs
    • Katalog
    • Coursera Plus
    • Berufsbezogene Zertifikate
    • MasterTrack® Certificates
    • Abschlüsse
    • Für Unternehmen
    • Für Regierungen
    • Für Campus
    • Werden Sie Partner
    • Soziale Auswirkung
    • Kostenlose Kurse
    • ECTS-Credit-Empfehlungen

    Community

    • Kursteilnehmer
    • Partner
    • Beta-Tester
    • Blog
    • Der Coursera-Podcast
    • Tech-Blog
    • Lehrzentrum

    Mehr

    • Presse
    • Anleger
    • Nutzungsbedingungen/AGB
    • Datenschutz
    • Hilfe
    • Barrierefreiheit
    • Kontakt
    • Artikel
    • Verzeichnis
    • Partnerunternehmen
    • Stellungnahme zu moderner Sklaverei
    • Cookie-Einstellungen verwalten
    Überall lernen
    Aus dem App Store herunterladen
    Erhältlich bei Google Play
    Logo von Certified B Corporation
    © 2025 Coursera Inc. Alle Rechte vorbehalten.
    • Coursera Facebook
    • Coursera LinkedIn
    • Coursera Twitter
    • Coursera YouTube
    • Coursera Instagram
    • Coursera auf TikTok