This course introduces the fundamentals of Natural Language Processing (NLP), combining core linguistic concepts with hands-on programming techniques to help you understand how machines process human language. Whether you're new to NLP or looking to build foundational skills, this course provides a clear and practical path into one of the most exciting areas of AI and data science.



Expérience recommandée
Ce que vous apprendrez
Remember key NLP concepts and terminology used in processing human language and modern AI applications.
Understand core linguistic principles like morphology, syntax, semantics, and pragmatics in NLP.
Apply Python tools and techniques to clean, preprocess, and extract features from text data effectively.
Develop and evaluate basic NLP models for tasks like text classification and named entity recognition.
Compétences que vous acquerrez
- Catégorie : Text Mining
- Catégorie : Feature Engineering
- Catégorie : Machine Learning Algorithms
- Catégorie : Data Cleansing
- Catégorie : Supervised Learning
- Catégorie : Applied Machine Learning
- Catégorie : Deep Learning
- Catégorie : Natural Language Processing
- Catégorie : Data Processing
- Catégorie : Artificial Intelligence
Détails à connaître

Ajouter à votre profil LinkedIn
juin 2025
15 devoirs
Découvrez comment les employés des entreprises prestigieuses maîtrisent des compétences recherchées

Il y a 4 modules dans ce cours
In this module, learners will develop a foundational understanding of Natural Language Processing (NLP) and its role in interpreting and processing human language. They will explore the history of NLP, its key challenges, and real-world applications. The module also introduces essential linguistic concepts—morphology, syntax, semantics, pragmatics, and discourse—that form the basis of how machines understand and work with human language.
Inclus
21 vidéos3 lectures4 devoirs1 sujet de discussion
This module focuses on preparing textual data for analysis by exploring techniques like tokenization, normalization, stemming, and lemmatization. Learners will also examine various feature extraction methods, including Bag-of-Words, TF-IDF, and word embeddings like Word2Vec and GloVe to represent language in machine-readable formats.
Inclus
44 vidéos4 lectures6 devoirs
In this module, learners will study techniques for identifying entities and extracting structured information from text. It covers rule-based and deep learning-based NER models, dependency and constituency parsing methods, and syntactic tree construction to enable deeper text understanding.
Inclus
13 vidéos3 lectures4 devoirs
This module is designed to assess learners on the key concepts and techniques covered throughout the course. It includes a graded quiz that tests knowledge of NLP foundations, linguistic principles, text preprocessing, feature engineering, entity recognition, and parsing methods using both classical and deep learning approaches.
Inclus
1 vidéo1 lecture1 devoir1 sujet de discussion
Obtenez un certificat professionnel
Ajoutez ce titre à votre profil LinkedIn, à votre curriculum vitae ou à votre CV. Partagez-le sur les médias sociaux et dans votre évaluation des performances.
Pour quelles raisons les étudiants sur Coursera nous choisissent-ils pour leur carrière ?





Ouvrez de nouvelles portes avec Coursera Plus
Accès illimité à 10,000+ cours de niveau international, projets pratiques et programmes de certification prêts à l'emploi - tous inclus dans votre abonnement.
Faites progresser votre carrière avec un diplôme en ligne
Obtenez un diplôme auprès d’universités de renommée mondiale - 100 % en ligne
Rejoignez plus de 3 400 entreprises mondiales qui ont choisi Coursera pour les affaires
Améliorez les compétences de vos employés pour exceller dans l’économie numérique
Foire Aux Questions
NLP (Natural Language Processing) is a branch of artificial intelligence designed to help computers understand, interpret, and generate human language. It is an extensive field with many applications, such as machine translation, chatbots, text analysis, and sentiment analysis.
The key components of NLP are:
Natural Language Understanding (NLU): The process of mapping human language input to a representation that can be understood by the computer.
Natural Language Generation (NLG): The process of generating human language output from a representation that can be understood by the computer.
Some common applications of NLP are:
Machine Translation: The process of translating text from one language to another.
Chatbots: Interactive systems that can communicate with users in natural language.
Text Analysis: The process of extracting information and insights from text data.
Sentiment analysis: Determining the emotional tone of text.
Question Answering: The development of systems that are capable of responding to inquiries regarding a specific text or knowledge base.
Plus de questions
Aide financière disponible,