This course is designed to provide a comprehensive foundation in Azure Machine Learning, equipping learners with essential skills for managing ML workflows within the Azure ML workspace. Participants will begin by understanding core workspace fundamentals, including environment setup, resource management, and key components for ML experimentation. The course progresses to advanced concepts such as optimizing compute resources, managing datasets effectively, and configuring high-performance ML pipelines.



Azure ML: Deploying, Managing, and Experimenting with Models
Ce cours fait partie de Spécialisation Exam Prep DP-100: Microsoft Azure Data Scientist Associate

Instructeur : Whizlabs Instructor
Inclus avec
Expérience recommandée
Compétences que vous acquerrez
- Catégorie : Cloud Computing
- Catégorie : Microsoft Azure
- Catégorie : Data Management
- Catégorie : Machine Learning
- Catégorie : Data Ethics
- Catégorie : Scalability
- Catégorie : MLOps (Machine Learning Operations)
- Catégorie : Application Deployment
- Catégorie : Artificial Intelligence and Machine Learning (AI/ML)
- Catégorie : Performance Tuning
Détails à connaître

Ajouter à votre profil LinkedIn
juin 2025
5 devoirs
Découvrez comment les employés des entreprises prestigieuses maîtrisent des compétences recherchées

Élaborez votre expertise du sujet
- Apprenez de nouveaux concepts auprès d'experts du secteur
- Acquérez une compréhension de base d'un sujet ou d'un outil
- Développez des compétences professionnelles avec des projets pratiques
- Obtenez un certificat professionnel partageable

Il y a 2 modules dans ce cours
This course provides a deep dive into identifying appropriate data sources, formats, and ingestion strategies for machine learning projects in Azure, ensuring efficient data handling. It emphasizes the principles of selecting the right services and compute options for model training, optimizing performance and scalability. Participants will gain expertise in differentiating between real-time and batch deployment strategies based on consumption needs, enabling informed architectural decisions. Additionally, the course explores MLOps best practices, guiding learners through the design and implementation of scalable workflows and effective Azure ML environment organization, ensuring seamless integration and lifecycle management.
Inclus
11 vidéos3 lectures2 devoirs
This module provides a comprehensive understanding of deploying, registering, and managing machine learning models within Azure Machine Learning, equipping learners with the skills to operationalize ML solutions. Participants will explore concepts such as deploying models to managed online endpoints, MLflow model registration, and applying Blue-Green deployment strategies for seamless updates. The module covers logging and autologging ML models using MLflow, configuring model signatures, and understanding the MLflow model format to enhance interoperability. Learners will gain expertise in Responsible AI practices, including evaluating the Responsible AI dashboard, performing error analysis, and exploring explanations, counterfactuals, and causal analysis. Additionally, the module includes exam tips to help learners succeed in Azure ML certification. By the end of this module, participants will be equipped with practical knowledge to deploy and manage ML models efficiently while ensuring ethical and responsible AI implementation in Azure Machine Learning.
Inclus
18 vidéos1 lecture3 devoirs
Obtenez un certificat professionnel
Ajoutez ce titre à votre profil LinkedIn, à votre curriculum vitae ou à votre CV. Partagez-le sur les médias sociaux et dans votre évaluation des performances.
Instructeur

Offert par
En savoir plus sur Data Management
- Statut : Essai gratuit
- Statut : Essai gratuit
Coursera Project Network
- Statut : Essai gratuit
Pour quelles raisons les étudiants sur Coursera nous choisissent-ils pour leur carrière ?





Ouvrez de nouvelles portes avec Coursera Plus
Accès illimité à 10,000+ cours de niveau international, projets pratiques et programmes de certification prêts à l'emploi - tous inclus dans votre abonnement.
Faites progresser votre carrière avec un diplôme en ligne
Obtenez un diplôme auprès d’universités de renommée mondiale - 100 % en ligne
Rejoignez plus de 3 400 entreprises mondiales qui ont choisi Coursera pour les affaires
Améliorez les compétences de vos employés pour exceller dans l’économie numérique
Foire Aux Questions
Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:
The course may not offer an audit option. You can try a Free Trial instead, or apply for Financial Aid.
The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile. If you only want to read and view the course content, you can audit the course for free.
If you subscribed, you get a 7-day free trial during which you can cancel at no penalty. After that, we don’t give refunds, but you can cancel your subscription at any time. See our full refund policy.
Plus de questions
Aide financière disponible,