Duke University
Spezialisierung MLOps | Maschinelles Lernen Operationen
Duke University

Spezialisierung MLOps | Maschinelles Lernen Operationen

Werden Sie Ingenieur für maschinelles Lernen. Verbessern Sie Ihre Programmierkenntnisse mit MLOps

Noah Gift
Alfredo Deza

Dozenten: Noah Gift

19.931 bereits angemeldet

Bei Coursera Plus enthalten

Befassen Sie sich eingehend mit einem Thema
3.9

(258 Bewertungen)

Stufe Fortgeschritten

Empfohlene Erfahrung

6 months to complete
at 5 hours a week
Flexibler Zeitplan
In Ihrem eigenen Lerntempo lernen
Befassen Sie sich eingehend mit einem Thema
3.9

(258 Bewertungen)

Stufe Fortgeschritten

Empfohlene Erfahrung

6 months to complete
at 5 hours a week
Flexibler Zeitplan
In Ihrem eigenen Lerntempo lernen

Was Sie lernen werden

  • Beherrschen Sie die Grundlagen von Python, die Prinzipien von MLOps und die Datenverwaltung, um ML-Modelle in Produktionsumgebungen zu erstellen und einzusetzen.

  • Nutzen Sie Amazon Sagemaker / AWS, Azure, MLflow und Hugging Face für End-to-End-ML-Lösungen, Pipeline-Erstellung und API-Entwicklung.

  • Feinabstimmung und Bereitstellung von Large Language Models (LLMs) und containerisierten Modellen im ONNX-Format mit Hugging Face.

  • Entwerfen Sie eine vollständige MLOps-Pipeline mit MLflow und verwalten Sie Projekte, Modelle und Tracking-Systemfunktionen.

Kompetenzen, die Sie erwerben

  • Kategorie: NumPy
  • Kategorie: Bereitstellung von Anwendungen
  • Kategorie: Pandas (Python-Paket)
  • Kategorie: Cloud-Lösungen
  • Kategorie: Microsoft Azure
  • Kategorie: Datenmanipulation
  • Kategorie: Amazon Webdienste
  • Kategorie: Datenethik
  • Kategorie: CI/CD
  • Kategorie: Rust (Programmiersprache)
  • Kategorie: Daten-Pipelines
  • Kategorie: Daten importieren/exportieren

Wichtige Details

Zertifikat zur Vorlage

Zu Ihrem LinkedIn-Profil hinzufügen

Unterrichtet in Englisch

Erfahren Sie, wie Mitarbeiter führender Unternehmen gefragte Kompetenzen erwerben.

 Logos von Petrobras, TATA, Danone, Capgemini, P&G und L'Oreal

Erweitern Sie Ihre Fachkenntnisse.

  • Erlernen Sie gefragte Kompetenzen von Universitäten und Branchenexperten.
  • Erlernen Sie ein Thema oder ein Tool mit echten Projekten.
  • Entwickeln Sie ein fundiertes Verständnisse der Kernkonzepte.
  • Erwerben Sie ein Karrierezertifikat von Duke University.

Spezialisierung - 4 Kursreihen

Python Grundlagen für MLOps

Python Grundlagen für MLOps

KURS 143 Stunden

Was Sie lernen werden

  • Arbeiten Sie mit Logik in Python, weisen Sie Variablen zu und verwenden Sie verschiedene Datenstrukturen.

  • Schreiben, führen und debuggen Sie Tests mit Pytest, um Ihre Arbeit zu validieren.

  • Interagieren Sie mit APIs und SDKs, um Befehlszeilen-Tools und HTTP-APIs zur Lösung und Automatisierung von Machine Learning-Problemen zu erstellen.

Kompetenzen, die Sie erwerben

Kategorie: Befehlszeilen-Schnittstelle
Kategorie: Software-Tests
Kategorie: Testautomatisierung
Kategorie: Datenmanipulation
Kategorie: NumPy
Kategorie: Maschinelles Lernen
Kategorie: Daten importieren/exportieren
Kategorie: Programm-Entwicklung
Kategorie: Skripting
Kategorie: MLOps (Maschinelles Lernen Operations)
Kategorie: Pandas (Python-Paket)
Kategorie: Objektorientierte Programmierung (OOP)
Kategorie: Numerische Analyse
Kategorie: Fehlersuche
Kategorie: Datenstrukturen
Kategorie: Schnittstelle zur Anwendungsprogrammierung (API)
Kategorie: Python-Programmierung
DevOps, DataOps, MLOps

DevOps, DataOps, MLOps

KURS 244 Stunden

Was Sie lernen werden

  • Aufbau von Betriebs-Pipelines mit DevOps, DataOps und MLOps

  • Erklären Sie die Prinzipien und Praktiken von MLOps (d.h. Datenmanagement, Modellschulung und -entwicklung, kontinuierliche Integration und Bereitstellung usw.)

  • Erstellen und implementieren Sie Modelle für maschinelles Lernen in einer Produktionsumgebung mit MLOps-Tools und -Plattformen.

Kompetenzen, die Sie erwerben

Kategorie: Befehlszeilen-Schnittstelle
Kategorie: Künstliche Intelligenz und Maschinelles Lernen (KI/ML)
Kategorie: Serverloses Rechnen
Kategorie: GitHub
Kategorie: Datenethik
Kategorie: Anwendungs-Rahmenwerke
Kategorie: Cloud-Lösungen
Kategorie: CI/CD
Kategorie: Maschinelles Lernen
Kategorie: Containerisierung
Kategorie: MLOps (Maschinelles Lernen Operations)
Kategorie: Generative AI-Agenten
Kategorie: Devops
Kategorie: Docker (Software)
Kategorie: Angewandtes maschinelles Lernen
Kategorie: Rust (Programmiersprache)
Kategorie: Big Data
Kategorie: Python-Programmierung

Was Sie lernen werden

  • Wenden Sie Techniken der explorativen Datenanalyse (EDA) auf datenwissenschaftliche Probleme und Datensätze an.

  • Erstellen Sie Modellierungslösungen für maschinelles Lernen mit AWS- und Azure-Technologie.

  • Trainieren und implementieren Sie Lösungen für maschinelles Lernen in einer Produktionsumgebung mit Cloud-Technologie.

Kompetenzen, die Sie erwerben

Kategorie: Künstliche Intelligenz und Maschinelles Lernen (KI/ML)
Kategorie: Serverloses Rechnen
Kategorie: Datenanalyse
Kategorie: Cloud-Lösungen
Kategorie: Daten-Pipelines
Kategorie: Methoden des Maschinellen Lernens
Kategorie: AWS SageMaker
Kategorie: Microsoft Azure
Kategorie: Amazon Webdienste
Kategorie: Cloud-Plattformen
Kategorie: Maschinelles Lernen
Kategorie: Explorative Datenanalyse
Kategorie: Amazon S3
Kategorie: MLOps (Maschinelles Lernen Operations)
Kategorie: Prädiktive Modellierung
Kategorie: Feature Technik
Kategorie: Algorithmen für maschinelles Lernen
Kategorie: Cloud-Technik
Kategorie: Software für maschinelles Lernen

Was Sie lernen werden

  • Erstellen Sie neue MLflow-Projekte, um Modelle zu erstellen und zu registrieren.

  • Verwenden Sie Hugging Face-Modelle und -Datensätze, um Ihre eigenen APIs zu erstellen.

  • Verpacken Sie Hugging Face und stellen Sie es mithilfe von Automatisierung in der Cloud bereit.

Kompetenzen, die Sie erwerben

Kategorie: Entwicklungsumgebung
Kategorie: Containerisierung
Kategorie: GitHub
Kategorie: MLOps (Maschinelles Lernen Operations)
Kategorie: Cloud-Anwendungen
Kategorie: Docker (Software)
Kategorie: CI/CD
Kategorie: Microsoft Azure
Kategorie: Schnittstelle zur Anwendungsprogrammierung (API)
Kategorie: Cloud Computing
Kategorie: Bereitstellung von Anwendungen

Erwerben Sie ein Karrierezertifikat.

Fügen Sie dieses Zeugnis Ihrem LinkedIn-Profil, Lebenslauf oder CV hinzu. Teilen Sie sie in Social Media und in Ihrer Leistungsbeurteilung.

Dozenten

Noah Gift
Duke University
40 Kurse176.458 Lernende

von

Duke University

Warum entscheiden sich Menschen für Coursera für ihre Karriere?

Felipe M.
Lernender seit 2018
„Es ist eine großartige Erfahrung, in meinem eigenen Tempo zu lernen. Ich kann lernen, wenn ich Zeit und Nerven dazu habe.“
Jennifer J.
Lernender seit 2020
„Bei einem spannenden neuen Projekt konnte ich die neuen Kenntnisse und Kompetenzen aus den Kursen direkt bei der Arbeit anwenden.“
Larry W.
Lernender seit 2021
„Wenn mir Kurse zu Themen fehlen, die meine Universität nicht anbietet, ist Coursera mit die beste Alternative.“
Chaitanya A.
„Man lernt nicht nur, um bei der Arbeit besser zu werden. Es geht noch um viel mehr. Bei Coursera kann ich ohne Grenzen lernen.“
Coursera Plus

Neue Karrieremöglichkeiten mit Coursera Plus

Unbegrenzter Zugang zu 10,000+ Weltklasse-Kursen, praktischen Projekten und berufsqualifizierenden Zertifikatsprogrammen - alles in Ihrem Abonnement enthalten

Bringen Sie Ihre Karriere mit einem Online-Abschluss voran.

Erwerben Sie einen Abschluss von erstklassigen Universitäten – 100 % online

Schließen Sie sich mehr als 3.400 Unternehmen in aller Welt an, die sich für Coursera for Business entschieden haben.

Schulen Sie Ihre Mitarbeiter*innen, um sich in der digitalen Wirtschaft zu behaupten.

Häufig gestellte Fragen