Generative AI systems—large language models (LLMs), Retrieval-Augmented Generation (RAG), and agentic AI—demand modern data strategies to ensure accuracy and reliability. These technologies hinge on high-quality, well-governed data; without a robust framework, even advanced models risk generating flawed outputs. This course explores how foundational data principles enable scalable, trustworthy generative AI solutions.



Empfohlene Erfahrung
Was Sie lernen werden
Explain the components of a modern data framework and its role in GenAI.
Differentiate between structured and unstructured data in AI implementations.
Apply foundational data governance and management principles to support scalable GenAI solutions.
Kompetenzen, die Sie erwerben
- Kategorie: Taxonomy
- Kategorie: Data Governance
- Kategorie: Generative AI
- Kategorie: Unstructured Data
- Kategorie: Data Architecture
- Kategorie: Prompt Engineering
- Kategorie: Data Access
- Kategorie: Data Quality
- Kategorie: Data Strategy
- Kategorie: Data Management
- Kategorie: Agentic systems
- Kategorie: Large Language Modeling
- Kategorie: Data Infrastructure
- Kategorie: Information Architecture
- Kategorie: Data Security
Wichtige Details

Zu Ihrem LinkedIn-Profil hinzufügen
Mai 2025
4 Aufgaben
Erfahren Sie, wie Mitarbeiter führender Unternehmen gefragte Kompetenzen erwerben.

In diesem Kurs gibt es 2 Module
In today’s rapidly evolving AI landscape, data is no longer just a byproduct—it's the fuel that powers intelligent systems. This module introduces the foundational role of data frameworks in modern data strategy, especially in the context of Generative AI applications. We begin by discussing how Large Language Models (LLMs), RAG (Retrieval-Augmented Generation), and Agentic AI systems rely on high-quality, well-governed data. You’ll explore the evolution of these technologies, their dependencies on structured and unstructured data, and how data strategy must evolve in parallel. The module also covers the core pillars of a modern data strategy—data frameworks, management, and governance—and explains their critical role in driving performance, compliance, and scalability in GenAI solutions. Through examples, case studies, and guided walkthroughs, you’ll learn how to design frameworks that support relevance, quality, and accountability, ensuring that AI systems are both powerful and responsible.
Das ist alles enthalten
6 Videos5 Lektüren2 Aufgaben1 Diskussionsthema
As generative AI continues to evolve, the importance of well-structured data frameworks has become central to building scalable and ethical AI systems. In this module, we focus on designing comprehensive data frameworks that support the needs of modern AI systems, especially those that rely on both structured and unstructured data. You’ll explore the role of customized taxonomies in organizing data, and how these taxonomies enable consistent data classification and retrieval. We also examine how Responsible AI (RAI) principles influence data strategy and governance, ensuring that fairness, transparency, and accountability are built into the foundation. Through practical discussions and expert insights, you'll see how the components of a robust data framework—taxonomy design, ethical considerations, and governance practices—work together. Finally, we look ahead at emerging trends and evolving expectations in data frameworks to prepare for the future of GenAI deployment.
Das ist alles enthalten
7 Videos4 Lektüren2 Aufgaben2 Diskussionsthemen2 Unbewertete Labore1 Plug-in
Erwerben Sie ein Karrierezertifikat.
Fügen Sie dieses Zeugnis Ihrem LinkedIn-Profil, Lebenslauf oder CV hinzu. Teilen Sie sie in Social Media und in Ihrer Leistungsbeurteilung.
Mehr von Machine Learning entdecken
- Status: Kostenloser Testzeitraum
Edureka
- Status: Kostenloser Testzeitraum
- Status: Kostenloser Testzeitraum
Vanderbilt University
Microsoft
Warum entscheiden sich Menschen für Coursera für ihre Karriere?





Neue Karrieremöglichkeiten mit Coursera Plus
Unbegrenzter Zugang zu 10,000+ Weltklasse-Kursen, praktischen Projekten und berufsqualifizierenden Zertifikatsprogrammen - alles in Ihrem Abonnement enthalten
Bringen Sie Ihre Karriere mit einem Online-Abschluss voran.
Erwerben Sie einen Abschluss von erstklassigen Universitäten – 100 % online
Schließen Sie sich mehr als 3.400 Unternehmen in aller Welt an, die sich für Coursera for Business entschieden haben.
Schulen Sie Ihre Mitarbeiter*innen, um sich in der digitalen Wirtschaft zu behaupten.
Häufig gestellte Fragen
Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:
The course may not offer an audit option. You can try a Free Trial instead, or apply for Financial Aid.
The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you purchase a Certificate you get access to all course materials, including graded assignments. Upon completing the course, your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile. If you only want to read and view the course content, you can audit the course for free.
You will be eligible for a full refund until two weeks after your payment date, or (for courses that have just launched) until two weeks after the first session of the course begins, whichever is later. You cannot receive a refund once you’ve earned a Course Certificate, even if you complete the course within the two-week refund period. See our full refund policy.
Weitere Fragen
Finanzielle Unterstützung verfügbar,