In “Applied Information Extraction in Python,” you will learn how to extract useful information from free-text data, which is a type of string data created when people type. Examples of free-text data include names of people or organizations, location information such as cities and zip codes, or other elements like stock prices or clinical diagnoses. Free-text data is found everywhere, from magazine articles to social media posts, and can be complex to analyze.

Frühbucherrabatt! Schalten Sie 10.000+ Kurse von Google, Microsoft und mehr für £160/Jahr frei. Jetzt sparen.


Applied Information Extraction in Python
Dieser Kurs ist Teil von Spezialisierung More Applied Data Science with Python

Dozent: VG Vinod Vydiswaran
Bei enthalten
Empfohlene Erfahrung
Was Sie lernen werden
Develop skills to process and interpret information presented in free-text data.
Identify the major classes of named entity recognition (NER) and implement, with guidance, state-of-the-art machine learning techniques for NER.
Compare, contrast, and select between multiple machine learning and deep learning approaches for NER.
Explore Large Language Models and configure a Transformer-based pipeline to extract entities of interest from a text dataset.
Kompetenzen, die Sie erwerben
- Kategorie: Unstructured Data
- Kategorie: Large Language Modeling
- Kategorie: Applied Machine Learning
- Kategorie: ChatGPT
- Kategorie: Text Mining
- Kategorie: Data Mining
- Kategorie: Data Pipelines
- Kategorie: Deep Learning
- Kategorie: Artificial Neural Networks
- Kategorie: Python Programming
- Kategorie: Natural Language Processing
- Kategorie: Feature Engineering
Wichtige Details

Zu Ihrem LinkedIn-Profil hinzufügen
Juni 2025
14 Aufgaben
Erfahren Sie, wie Mitarbeiter führender Unternehmen gefragte Kompetenzen erwerben.

Erweitern Sie Ihre Fachkenntnisse
- Lernen Sie neue Konzepte von Branchenexperten
- Gewinnen Sie ein Grundverständnis bestimmter Themen oder Tools
- Erwerben Sie berufsrelevante Kompetenzen durch praktische Projekte
- Erwerben Sie ein Berufszertifikat zur Vorlage

In diesem Kurs gibt es 4 Module
This module introduces information extraction, covering key tasks and approaches for extracting relevant information from text. You will explore pattern-based and list-based methods to identify and extract information from text data, applying these techniques across diverse domains. You will also develop an end-to-end NLP pipeline to extract named entities from free text using terminology resources.
Das ist alles enthalten
7 Videos5 Lektüren3 Aufgaben1 Programmieraufgabe1 Diskussionsthema1 Unbewertetes Labor
In Module 2, you'll dive into the world of named entity recognition (NER). You'll learn to define and identify named entities, and understand how to tackle related tasks by framing them as NER challenges. We'll explore how to use resources like standardized terminology and named gazettes to enhance NER. You'll also gain hands-on experience by training a machine learning model for sequence classification using an annotated text dataset. Finally, we'll discuss the pros and cons of different Markov models for NER, equipping you with the insights needed for practical applications.
Das ist alles enthalten
7 Videos6 Lektüren4 Aufgaben1 Programmieraufgabe1 Unbewertetes Labor
In Module 3, focused on neural network models, you will explore the differences between training deep learning models and traditional machine learning models. You'll learn how to model and train a neural network-based classifier, as well as formulate text as features for NER model training. We will discuss the pros and cons of deep learning approaches. You'll design a neural network model to identify concepts from free text and apply a trained deep learning model to solve NER tasks.
Das ist alles enthalten
5 Videos4 Lektüren4 Aufgaben1 Programmieraufgabe1 Unbewertetes Labor
In this module, you'll dive into the power of deep learning models in diverse fields such as healthcare and sports commentary. You'll learn how to build neural network models that are fine-tuned for specific tasks and discover how to set up a deep neural network for detecting key entities. We'll also introduce you to the world of large language models, showcasing their transformative capabilities and applications in information extraction.
Das ist alles enthalten
5 Videos4 Lektüren3 Aufgaben1 Programmieraufgabe1 Plug-in
Erwerben Sie ein Karrierezertifikat.
Fügen Sie dieses Zeugnis Ihrem LinkedIn-Profil, Lebenslauf oder CV hinzu. Teilen Sie sie in Social Media und in Ihrer Leistungsbeurteilung.
Dozent

Mehr von Machine Learning entdecken
University of Michigan
University of Michigan
University of Michigan
Warum entscheiden sich Menschen für Coursera für ihre Karriere?





Neue Karrieremöglichkeiten mit Coursera Plus
Unbegrenzter Zugang zu 10,000+ Weltklasse-Kursen, praktischen Projekten und berufsqualifizierenden Zertifikatsprogrammen - alles in Ihrem Abonnement enthalten
Bringen Sie Ihre Karriere mit einem Online-Abschluss voran.
Erwerben Sie einen Abschluss von erstklassigen Universitäten – 100 % online
Schließen Sie sich mehr als 3.400 Unternehmen in aller Welt an, die sich für Coursera for Business entschieden haben.
Schulen Sie Ihre Mitarbeiter*innen, um sich in der digitalen Wirtschaft zu behaupten.
Häufig gestellte Fragen
Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:
The course may not offer an audit option. You can try a Free Trial instead, or apply for Financial Aid.
The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile. If you only want to read and view the course content, you can audit the course for free.
If you subscribed, you get a 7-day free trial during which you can cancel at no penalty. After that, we don’t give refunds, but you can cancel your subscription at any time. See our full refund policy.
Weitere Fragen
Finanzielle Unterstützung verfügbar,