• For Individuals
  • For Businesses
  • For Universities
  • For Governments
Coursera
  • Online Degrees
  • Careers
  • Log In
  • Join for Free
    Coursera
    • Browse
    • Generative Adversarial Networks

    Generative Adversarial Networks (GANs) Courses Online

    Master GANs for generating synthetic data and images. Learn to design and train GAN models for applications in image processing and data augmentation.

    Skip to search results

    Filter by

    Subject
    Required
     *

    Language
    Required
     *

    The language used throughout the course, in both instruction and assessments.

    Learning Product
    Required
     *

    Build job-relevant skills in under 2 hours with hands-on tutorials.
    Learn from top instructors with graded assignments, videos, and discussion forums.
    Learn a new tool or skill in an interactive, hands-on environment.
    Get in-depth knowledge of a subject by completing a series of courses and projects.
    Earn career credentials from industry leaders that demonstrate your expertise.
    Earn your Bachelor’s or Master’s degree online for a fraction of the cost of in-person learning.
    Earn a university-issued career credential in a flexible, interactive format.

    Level
    Required
     *

    Duration
    Required
     *

    Skills
    Required
     *

    Subtitles
    Required
     *

    Educator
    Required
     *

    Explore the Generative Adversarial Networks (GANs) Course Catalog

    • Status: Free Trial
      Free Trial
      I

      IBM

      Generative AI: Elevate your Software Development Career

      Skills you'll gain: Prompt Engineering, Large Language Modeling, Generative AI, Data Ethics, Artificial Intelligence, Software Development Tools, Software Testing, Test Automation, Software Development, DevSecOps, Application Security, CI/CD, Natural Language Processing, Code Review, Software Architecture

      4.5
      Rating, 4.5 out of 5 stars
      ·
      155 reviews

      Intermediate · Course · 1 - 4 Weeks

    • Status: Free Trial
      Free Trial
      I

      IBM

      Generative AI: Enhance your Data Analytics Career

      Skills you'll gain: Generative AI, Data Storytelling, OpenAI, Analytics, Data Analysis, Artificial Intelligence and Machine Learning (AI/ML), Dashboard, Prompt Engineering, ChatGPT, Data Ethics, Data Visualization Software, SQL, Python Programming, Query Languages

      4.7
      Rating, 4.7 out of 5 stars
      ·
      115 reviews

      Intermediate · Course · 1 - 4 Weeks

    • Status: Free Trial
      Free Trial
      G

      Google

      Design a User Experience for Social Good & Prepare for Jobs

      Skills you'll gain: User Experience Design, UI/UX Research, User Centered Design, Design Thinking, Professional Development, Usability, Interviewing Skills, Responsive Web Design, Web Applications, Mobile Development, Mockups, Prototyping, Generative AI

      4.9
      Rating, 4.9 out of 5 stars
      ·
      4.6K reviews

      Beginner · Course · 1 - 4 Weeks

    • Status: Free Trial
      Free Trial
      G

      Google Cloud

      Machine Learning on Google Cloud

      Skills you'll gain: Feature Engineering, Prompt Engineering, Google Cloud Platform, Generative AI, Tensorflow, Keras (Neural Network Library), MLOps (Machine Learning Operations), Cloud Infrastructure, Artificial Intelligence and Machine Learning (AI/ML), Data Pipelines, Dataflow, Cloud Platforms, Data Management, Data Governance, Workflow Management, Application Deployment, Deep Learning, Applied Machine Learning, Machine Learning, Predictive Modeling

      4.4
      Rating, 4.4 out of 5 stars
      ·
      3.7K reviews

      Intermediate · Specialization · 3 - 6 Months

    • Status: Free Trial
      Free Trial
      Status: New AI skills
      New AI skills
      A

      Adobe

      Adobe Content Creator

      Skills you'll gain: Color Theory, Typography, Social Media Content, Target Audience, Video Production, Design, Multimedia, Content Creation, Graphic and Visual Design Software, Graphic and Visual Design, Social Media Strategy, Generative AI, Content Performance Analysis, Social Media Marketing, Storyboarding, Design Elements And Principles, Web Content Accessibility Guidelines, Social Media Management, Data Ethics, Adobe Creative Cloud

      4.7
      Rating, 4.7 out of 5 stars
      ·
      873 reviews

      Beginner · Professional Certificate · 3 - 6 Months

    • Status: New
      New
      Status: Free Trial
      Free Trial
      Status: New AI skills
      New AI skills
      A

      Adobe

      Adobe Graphic Designer

      Skills you'll gain: Photo Editing, Color Theory, Adobe Illustrator, Typography, Adobe Photoshop, Adobe Acrobat, Design, Graphic and Visual Design Software, Document Management, Generative AI, Graphic and Visual Design, Design Elements And Principles, Web Content Accessibility Guidelines, Graphic Design, Logo Design, Photography, Data Ethics, Workflow Management, Adobe Creative Cloud, Collaborative Software

      4.7
      Rating, 4.7 out of 5 stars
      ·
      847 reviews

      Beginner · Professional Certificate · 3 - 6 Months

    • Status: New
      New
      Status: Free Trial
      Free Trial
      G

      Google

      Google AI Essentials

      Skills you'll gain: Prompt Engineering, Generative AI, Workflow Management, Data Ethics, Artificial Intelligence and Machine Learning (AI/ML), Large Language Modeling, Artificial Intelligence, Process Optimization, ChatGPT, Productivity Software, Workforce Development, Strategic Thinking, Security Awareness, Diversity Awareness, Risk Management Framework, Digital Transformation, Innovation, Technical Writing, Emerging Technologies, Machine Learning Software

      4.8
      Rating, 4.8 out of 5 stars
      ·
      491 reviews

      Beginner · Specialization · 1 - 3 Months

    • Status: Free Trial
      Free Trial
      U

      University of California, Irvine

      Introduction to the Internet of Things and Embedded Systems

      Skills you'll gain: Embedded Systems, Internet Of Things, General Networking, Operating Systems, Wireless Networks, Network Protocols, Computer Hardware, Emerging Technologies

      4.7
      Rating, 4.7 out of 5 stars
      ·
      13K reviews

      Mixed · Course · 1 - 4 Weeks

    • Status: Free Trial
      Free Trial
      G

      Google Cloud

      Essential Google Cloud Infrastructure: Foundation

      Skills you'll gain: Cloud Infrastructure, Cloud Storage, Infrastructure As A Service (IaaS), Google Cloud Platform, Cloud Computing Architecture, Cloud Computing, Network Infrastructure, Virtual Machines, Cloud Management, Virtual Private Networks (VPN), Command-Line Interface, Firewall

      4.7
      Rating, 4.7 out of 5 stars
      ·
      17K reviews

      Intermediate · Course · 1 - 4 Weeks

    • Status: Free
      Free
      A

      Amazon Web Services

      Generative AI for Executives

      Skills you'll gain: Generative AI Agents, Amazon Web Services, Emerging Technologies, Business Transformation, Technical Communication, Business Leadership, Workforce Development, Business Strategy

      3.8
      Rating, 3.8 out of 5 stars
      ·
      20 reviews

      Beginner · Course · 1 - 4 Weeks

    • Status: Free Trial
      Free Trial
      D

      DeepLearning.AI

      Natural Language Processing in TensorFlow

      Skills you'll gain: Tensorflow, Natural Language Processing, Generative AI, Deep Learning, Artificial Intelligence and Machine Learning (AI/ML), Artificial Neural Networks, Text Mining, Data Processing

      4.6
      Rating, 4.6 out of 5 stars
      ·
      6.5K reviews

      Intermediate · Course · 1 - 4 Weeks

    • Status: Free Trial
      Free Trial
      U

      University of Washington

      Machine Learning Foundations: A Case Study Approach

      Skills you'll gain: Applied Machine Learning, Feature Engineering, Regression Analysis, Machine Learning, Image Analysis, Artificial Intelligence and Machine Learning (AI/ML), Supervised Learning, Artificial Intelligence, Deep Learning, Classification And Regression Tree (CART), Computer Vision, Application Development, Predictive Modeling, Natural Language Processing, Text Mining, Data Mining, Information Architecture

      4.6
      Rating, 4.6 out of 5 stars
      ·
      14K reviews

      Mixed · Course · 1 - 3 Months

    Generative Adversarial Networks learners also search

    Generative AI
    Beginner Generative AI
    Generative AI Projects
    Neural Networks
    Advanced Generative AI
    Artificial Intelligence
    Advanced Artificial Intelligence
    Tensorflow
    1…151617…220

    In summary, here are 10 of our most popular generative adversarial networks courses

    • Generative AI: Elevate your Software Development Career: IBM
    • Generative AI: Enhance your Data Analytics Career : IBM
    • Design a User Experience for Social Good & Prepare for Jobs: Google
    • Machine Learning on Google Cloud: Google Cloud
    • Adobe Content Creator: Adobe
    • Adobe Graphic Designer: Adobe
    • Google AI Essentials: Google
    • Introduction to the Internet of Things and Embedded Systems: University of California, Irvine
    • Essential Google Cloud Infrastructure: Foundation: Google Cloud
    • Generative AI for Executives: Amazon Web Services

    Frequently Asked Questions about Generative Adversarial Networks

    Generative Adversarial Networks (GANs) are a class of machine learning algorithms that consist of two neural networks: the generator and the discriminator. The generator is responsible for creating new data samples, such as images or text, while the discriminator's role is to distinguish between real and fake/generated data.

    During the training process, the generator tries to generate data that appears as realistic as possible, aiming to deceive the discriminator. On the other hand, the discriminator is continuously learning to become better at distinguishing between real and generated data.

    As the generator and discriminator compete against each other, GANs can generate incredibly realistic and high-quality data samples within the specific domain they have been trained on. These networks have found various applications in computer vision, natural language processing, and other creative tasks, such as image and video synthesis, style transfer, and text generation.

    Overall, GANs play a crucial role in the field of deep learning and are widely used in research and industry for generating synthetic data and enhancing various applications.‎

    To master Generative Adversarial Networks (GANs), you would need to gain proficiency in several skills. Here are some key areas of knowledge and skills to focus on:

    1. Machine Learning and Deep Learning: A solid understanding of machine learning and deep learning concepts is essential. Familiarize yourself with topics like neural networks, activation functions, backpropagation, and optimization algorithms.

    2. Neural Networks and Convolutional Neural Networks (CNNs): GANs heavily utilize convolutional neural networks for image-related tasks. Learning CNN architectures, layers, and techniques like pooling and convolution is crucial.

    3. Python Programming: Python is the de facto language for deep learning and applying GANs. Acquire proficiency in Python and popular libraries such as TensorFlow, Keras, and PyTorch.

    4. Image Processing: GANs primarily deal with image data, so understanding image processing techniques like normalization, transformation, resizing, and data augmentation will be beneficial.

    5. Probability and Statistics: A good grasp of probability theory, statistics, and concepts like distributions, expectation, and variance is important for training and evaluating GAN models.

    6. Generative Models: Familiarize yourself with various generative models like autoencoders and variational autoencoders, as they form the basis for GANs.

    7. GAN Architecture and Training Methods: Dive into the theory and development of GAN architectures, loss functions (e.g., adversarial loss, reconstruction loss), and training methods (e.g., mini-batch stochastic gradient descent, Adam optimization).

    8. Optimization and Regularization Techniques: Gain knowledge about optimization algorithms such as stochastic gradient descent (SGD), learning rate decay, and weight regularization methods to improve GAN training stability and performance.

    9. Ethical Considerations: Understand the ethical implications and challenges in using GANs, as they can be misused for creating deepfake images, generating misleading content, or breaching privacy.

    To fully grasp and apply Generative Adversarial Networks effectively, a comprehensive understanding of these skills will greatly aid in your success. Good luck with your learning journey!‎

    With Generative Adversarial Networks (GAN) skills, you can pursue various job opportunities in the field of artificial intelligence (AI) and machine learning. Some potential job roles include:

    1. Machine Learning Engineer: As a Machine Learning Engineer, you can utilize GAN skills to develop and optimize models that generate synthetic data, improve image and video processing, and create realistic simulations.

    2. AI Researcher: GAN skills are valuable for AI researchers as they enable the generation of new and realistic data. With this knowledge, you can work on advancing GAN technology and developing cutting-edge AI applications.

    3. Data Scientist: GAN skills can be beneficial for Data Scientists in generating synthetic data that resembles real data distributions. This can be utilized for data augmentation, improving training data, and extracting insights from complex datasets.

    4. Computer Vision Engineer: GANs have a significant impact on computer vision tasks. With GAN skills, you can work on developing innovative computer vision algorithms, enhancing image and video processing techniques, and creating realistic visual simulations.

    5. AI Consultant: With expertise in GANs, you can work as an AI consultant, helping businesses implement and leverage GAN technology to enhance their products and services. You can provide valuable insights and recommendations on how GANs can be harnessed for various use cases.

    6. Academia/Researcher: GANs have become popular in academic research, and with GAN skills, you can contribute to the academia by exploring new applications, developing novel architectures, and publishing research papers in the field of AI and machine learning.

    It is important to note that proficiency in GANs is just a part of the skillset required for these positions. Strong foundations in AI, machine learning, mathematics, and programming are also essential for success in these roles.‎

    People who have a strong background in mathematics, particularly in linear algebra and probability theory, are best suited for studying Generative Adversarial Networks (GANs). Additionally, individuals with a solid understanding of machine learning concepts, such as neural networks and optimization algorithms, will find it easier to grasp the complexities of GANs. Proficiency in programming languages like Python and experience with deep learning frameworks like TensorFlow or PyTorch are also beneficial for studying GANs. Finally, individuals who possess a creative mindset and an interest in computer vision or image generation will find studying GANs particularly rewarding.‎

    There are several topics you can study that are related to Generative Adversarial Networks (GANs):

    1. Machine Learning: GANs are a type of machine learning model, so having a solid understanding of machine learning concepts and algorithms is essential. Topics to cover include supervised and unsupervised learning, optimization techniques, and neural networks.

    2. Deep Learning: GANs heavily rely on deep learning frameworks and architectures. Study topics such as convolutional neural networks (CNNs), recurrent neural networks (RNNs), and autoencoders.

    3. Computer Vision: GANs have made significant contributions to the field of computer vision. Study computer vision techniques and algorithms, image processing, object detection, and image segmentation.

    4. Artificial Intelligence Ethics: GANs can be used for various purposes, including generating deepfakes and manipulating images. It is crucial to understand the ethical implications and potential misuse of GANs. Study topics like bias in AI, ethics in machine learning, and responsible AI development.

    5. Generative Models: GANs are a type of generative model, so it will be beneficial to study other generative models as well. Explore topics like variational autoencoders (VAEs), deep belief networks (DBNs), and restricted Boltzmann machines (RBMs).

    6. Mathematics and Probability: A strong foundation in mathematics is essential to understand GANs. Study linear algebra, calculus, probability theory, and statistics.

    7. Optimization Algorithms: GANs involve optimizing the generator and discriminator networks. Learn about various optimization algorithms such as stochastic gradient descent (SGD), Adam, and RMSprop.

    8. Natural Language Processing (NLP): GANs have also been applied to NLP tasks such as text generation and language translation. Familiarize yourself with NLP techniques, recurrent neural networks (RNNs), and attention mechanisms.

    9. Data Preprocessing and Augmentation: GANs often require large amounts of data for training. Learn about data preprocessing techniques, data augmentation methods, and strategies to handle imbalanced datasets.

    10. Research Papers and Latest Developments: Stay updated with the latest research papers and developments in the field of GANs. Read papers from conferences such as NeurIPS, ICML, and CVPR to gain insights into cutting-edge techniques and advancements.

    It is important to note that the complexity and depth of each topic may vary depending on your current level of knowledge and expertise. ‎

    Online Generative Adversarial Networks courses offer a convenient and flexible way to enhance your knowledge or learn new Generative Adversarial Networks (GANs) are a class of machine learning algorithms that consist of two neural networks: the generator and the discriminator. The generator is responsible for creating new data samples, such as images or text, while the discriminator's role is to distinguish between real and fake/generated data.

    During the training process, the generator tries to generate data that appears as realistic as possible, aiming to deceive the discriminator. On the other hand, the discriminator is continuously learning to become better at distinguishing between real and generated data.

    As the generator and discriminator compete against each other, GANs can generate incredibly realistic and high-quality data samples within the specific domain they have been trained on. These networks have found various applications in computer vision, natural language processing, and other creative tasks, such as image and video synthesis, style transfer, and text generation.

    Overall, GANs play a crucial role in the field of deep learning and are widely used in research and industry for generating synthetic data and enhancing various applications. skills. Choose from a wide range of Generative Adversarial Networks courses offered by top universities and industry leaders tailored to various skill levels.‎

    When looking to enhance your workforce's skills in Generative Adversarial Networks, it's crucial to select a course that aligns with their current abilities and learning objectives. Our Skills Dashboard is an invaluable tool for identifying skill gaps and choosing the most appropriate course for effective upskilling. For a comprehensive understanding of how our courses can benefit your employees, explore the enterprise solutions we offer. Discover more about our tailored programs at Coursera for Business here.‎

    This FAQ content has been made available for informational purposes only. Learners are advised to conduct additional research to ensure that courses and other credentials pursued meet their personal, professional, and financial goals.

    Other topics to explore

    Arts and Humanities
    338 courses
    Business
    1095 courses
    Computer Science
    668 courses
    Data Science
    425 courses
    Information Technology
    145 courses
    Health
    471 courses
    Math and Logic
    70 courses
    Personal Development
    137 courses
    Physical Science and Engineering
    413 courses
    Social Sciences
    401 courses
    Language Learning
    150 courses

    Coursera Footer

    Technical Skills

    • ChatGPT
    • Coding
    • Computer Science
    • Cybersecurity
    • DevOps
    • Ethical Hacking
    • Generative AI
    • Java Programming
    • Python
    • Web Development

    Analytical Skills

    • Artificial Intelligence
    • Big Data
    • Business Analysis
    • Data Analytics
    • Data Science
    • Financial Modeling
    • Machine Learning
    • Microsoft Excel
    • Microsoft Power BI
    • SQL

    Business Skills

    • Accounting
    • Digital Marketing
    • E-commerce
    • Finance
    • Google
    • Graphic Design
    • IBM
    • Marketing
    • Project Management
    • Social Media Marketing

    Career Resources

    • Essential IT Certifications
    • High-Income Skills to Learn
    • How to Get a PMP Certification
    • How to Learn Artificial Intelligence
    • Popular Cybersecurity Certifications
    • Popular Data Analytics Certifications
    • What Does a Data Analyst Do?
    • Career Development Resources
    • Career Aptitude Test
    • Share your Coursera Learning Story

    Coursera

    • About
    • What We Offer
    • Leadership
    • Careers
    • Catalog
    • Coursera Plus
    • Professional Certificates
    • MasterTrack® Certificates
    • Degrees
    • For Enterprise
    • For Government
    • For Campus
    • Become a Partner
    • Social Impact
    • Free Courses
    • ECTS Credit Recommendations

    Community

    • Learners
    • Partners
    • Beta Testers
    • Blog
    • The Coursera Podcast
    • Tech Blog
    • Teaching Center

    More

    • Press
    • Investors
    • Terms
    • Privacy
    • Help
    • Accessibility
    • Contact
    • Articles
    • Directory
    • Affiliates
    • Modern Slavery Statement
    • Manage Cookie Preferences
    Learn Anywhere
    Download on the App Store
    Get it on Google Play
    Logo of Certified B Corporation
    © 2025 Coursera Inc. All rights reserved.
    • Coursera Facebook
    • Coursera Linkedin
    • Coursera Twitter
    • Coursera YouTube
    • Coursera Instagram
    • Coursera TikTok